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In this document we describe a C++ framework for performing the optimization of nonlinear least
squares problems that can be embedded as a graph or in a hyper-graph. A hyper-graph is an extension
of a graph where an edge can connect multiple nodes and not only two. Several problems in robotics and
in computer vision require to find the optimum of an error function with respect of a set of parameters.
Examples include, popular applications like SLAM and Bundle adjustment.

In the literature, many approaches have been proposed to address this class of problems. The naive
implementation of standard methods, like Levenberg-Marquardt or Gauss-Newton can lead to acceptable
results for most applications, when the correct parameterization is chosen. However, to achieve the
maximum performances substantial efforts might be required.

g2o stands for General (Hyper) Graph Optimization. The purposes of this framework are the follow-
ing:

• To provide an easy-to-extend and easy-to-use general library for graph optimization that can be
easily applied to different problems,

• To provide people who want to understand SLAM or BA with an easy-to-read implementation that
focuses on the relevant details of the problem specification.

• Achieve state-of-the-art performances, while being as general as possible.

In the remainder of this document we will first characterize the (hyper) graph-embeddable problems,
and we will give an introduction to their solution via the popular Levenberg-Marquardt or Gauss-Newton
algorithms implemented in this library. Subsequently, we will describe the high-level behavior of the
library, and the basic structures. Finally, we will introduce how to implement 2D SLAM as a simple
example.

This document is not a replacement for the in-line documentation. Instead, it is a digest
to help the user/reader to read/browse and extend the code.

Please cite this when using g2o:
R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A General Framework for
Graph Optimization. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA). Shanghai,
China, May 2011.

1 (Hyper)Graph-Embeddable Optimization Problems
A least squares minimization problem can be described by the following equation:

F(x) =
∑
k∈C

ek(xk, zk)
TΩkek(xk, zk)︸ ︷︷ ︸
Fk

(1)

x∗ = argmin
x

F(x). (2)
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Figure 1: This example illustrates how to represent an objective function by a hyper-graph. Here we
illustrate a portion of a small SLAM problem [1]. In this example we assume that where the measurement
functions are governed by some unknown calibration parameters K. The robot poses are represented by
the variables p1:n. These variables are connected by constraints zij depicted by the square boxes. The
constraints arise, for instance, by matching nearby laser scans in the laser reference frame. The relation
between a laser match and a robot pose, however, depends on the position of the sensor on the robot,
which is modeled by the calibration parameters K. Conversely, subsequent robot poses are connected
by binary constraints uk arising from odometry measurements. These measurements are made in the
frame of the robot mobile base.

Here

• x = (xT
1 , . . . ,x

T
n )

T is a vector of parameters, where each xi represents a generic parameter block.

• xk = (xT
k1
, . . . ,xT

kq
)T ⊂ (xT

1 , . . . ,xT
n )

T is the subset of the parameters involved in the kth

constraint.

• zk and Ωk represent respectively the mean and the information matrix of a constraint relating the
parameters in xk.

• ek(xkzk) is a vector error function that measures how well the parameter blocks in xk satisfy the
constraint zk. It is 0 when xk and xj perfectly match the constraint. As an example, if one has
a measurement function ẑk = hk(xk) that generates a synthetic measurement ẑk given an actual
configuration of the nodes in xk. A straightforward error function would then be e(xk, zk) =
hk(xk)− zk.

For simplicity of notation, in the rest of this paper we will encode the measurement in the indices of the
error function:

ek(xk, zk)
def.
= ek(xk)

def.
= ek(x). (3)

Note that each parameter block and each error function can span over a different space. A problem in
this form can be effectively represented by a directed hyper-graph. A node i of the graph represents the
parameter block xi ∈ xk and an hyper-edge among the nodes xi ∈ xk represents a constraint involving all
nodes in xk. In case the hyper edges have size 2, the hyper-graph becomes an ordinary graph. Figure 1
shows an example of mapping between a hyper-graph and an objective function.

2 Least Squares Optimization
If a good initial guess x̆ of the parameters is known, a numerical solution of Eq. 2 can be obtained by using
the popular Gauss-Newton or Levenberg-Marquardt algorithms [2, §15.5]. The idea is to approximate
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the error function by its first order Taylor expansion around the current initial guess x̆

ek(x̆k +∆xk) = ek(x̆+∆x) (4)
' ek + Jk∆x. (5)

Here Jk is the Jacobian of ek(x) computed in x̆ and ek
def.
= ek(x̆). Substituting Eq. 5 in the error terms

Fk of Eq. 1, we obtain

Fk(x̆+∆x) (6)
= ek(x̆+∆x)TΩkek(x̆+∆x) (7)
≃ (ek + Jk∆x)T Ωk (ek + Jk∆x) (8)
= eT

k Ωkek︸ ︷︷ ︸
ck

+2 eT
k ΩkJk︸ ︷︷ ︸

bk

∆x+∆xT JT
k ΩkJk︸ ︷︷ ︸
Hk

∆x (9)

= ck + 2bk∆x+∆xTHk∆x (10)

With this local approximation, we can rewrite the function F(x) given in Eq. 1 as

F(x̆+∆x) =
∑
k∈C

Fk(x̆+∆x) (11)

≃
∑
k∈C

ck + 2bk∆x+∆xTHk∆x (12)

= c + 2bT∆x+∆xTH∆x. (13)

The quadratic form in Eq. 13 is obtained from Eq. 12 by setting c =
∑

ck, b =
∑

bk and H =
∑

Hk.
It can be minimized in ∆x by solving the linear system

H∆x∗ = −b. (14)

The matrixH is the information matrix of the system and is sparse by construction, having non-zeros only
between blocks connected by a constraint. Its number of non-zero blocks is twice the number of constrains
plus the number of nodes. This allows to solve Eq. 14 with efficient approaches like sparse Cholesky
factorization or Preconditioned Conjugate Gradients (PCG). An highly efficient implementation of sparse
Cholesky factorization can be found in publicly available packages like CSparse [3] or CHOLMOD [4].
The linearized solution is then obtained by adding to the initial guess the computed increments

x∗ = x̆+∆x∗. (15)

The popular Gauss-Newton algorithm iterates the linearization in Eq. 13, the solution in Eq. 14 and
the update step in Eq. 15. In every iteration, the previous solution is used as linearization point and as
initial guess.

The Levenberg-Marquardt (LM) algorithm is a nonlinear variant to Gauss-Newton that introduces
a damping factor and backup actions to control the convergence. Instead of solving directly Eq. 14 LM
solves a damped version of it

(H+ λI)∆x∗ = −b. (16)

Here λ is a damping factor: the larger λ is the smaller are the ∆x. This is useful to control the step size
in case of non-linear surfaces. The idea behind the LM algorithm is to dynamically control the damping
factor. At each iteration the error of the new configuration is monitored. If the new error is lower than
the previous one, lambda is decreased for the next iteration. Otherwise, the solution is reverted and
lambda is increased. For a more detailed explanation of the LM algorithm implemented in our package
we refer to [5].

The procedures described above are a general approach to multivariate function minimization. The
general approach, however, assumes that the space of parameters x is Euclidean, which is not valid
for several problems like SLAM or bundle adjustment. This may lead to sub-optimal solutions. In
the remainder of this section we discuss first the general solution when the space of the parameters is
Euclidean, and subsequently we extend this solution to more general non-Euclidean spaces.
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3 Considerations about the Structure of the Linearized System
According to Eq. 13, the matrix H and the vector b are obtained by summing up a set of matrices and
vectors, one for every constraint. If we set bk = JT

kΩkek and Hk = JT
kΩkJk we can rewrite H and b as

b =
∑
k∈C

bij (17)

H =
∑
k∈C

Hij . (18)

Every constraint will contribute to the system with an addend term. The structure of this addend
depends on the Jacobian of the error function. Since the error function of a constraint depends only on
the values of the nodes xi ∈ xk, the Jacobian in Eq. 5 has the following form:

Jk =
(
0 · · ·0 Jk1

· · · Jki
· · ·0 · · · Jkq

0 · · ·0
)
. (19)

Here Jki
= ∂e(xk)

∂xki
are the derivatives of the error function with respect to the nodes connected by the

kth hyper-edge, with respect to the parameter block xki
∈ xk.

From Eq. 9 we obtain the following structure for the block matrix Hij :

Hk =



. . .
JT
k1
ΩkJk1

· · · JT
k1
ΩkJki

· · · JT
k1
ΩkJkq

...
...

...
JT
ki
ΩkJk1

· · · JT
ki
ΩkBki

· · · JT
ki
ΩkJkq

...
...

...
JT
kq
ΩkJk1

· · · JT
kq
ΩkBki

· · · JT
kq
ΩkJkq

. . .


(20)

bk =



...
Jk1

Ωkek
...

JT
ki
Ωkek
...

JT
kq
Ωkek
...


(21)

For simplicity of notation we omitted the zero blocks. The reader might notice that the block structure
of the matrix H is the adjacency matrix of the hyper graph. Additionally the Hessian H is a symmetric
matrix, since all the Hk are symmetric. A single hyper-edge connecting q vertices will introduce q2 non
zero blocks in the Hessian, in correspondence of each pair

〈
xki ,xkj

〉
, of nodes connected.

4 Least Squares on Manifold
To deal with parameter blocks that span over a non-Euclidean spaces, it is common to apply the error
minimization on a manifold. A manifold is a mathematical space that is not necessarily Euclidean on a
global scale, but can be seen as Euclidean on a local scale [6].

For example, in the context of SLAM problem, each parameter block xi consists of a translation vector
ti and a rotational component αi. The translation ti clearly forms a Euclidean space. In contrast to that,
the rotational components αi span over the non-Euclidean 2D or 3D rotation group SO(2) or SO(3).
To avoid singularities, these spaces are usually described in an over-parameterized way, e.g., by rotation
matrices or quaternions. Directly applying Eq. 15 to these over-parameterized representations breaks
the constraints induced by the over-parameterization. The over-parameterization results in additional

4



degrees of freedom and thus introduces errors in the solution. To overcome this problem, one can use
a minimal representation for the rotation (like Euler angles in 3D). This, however, is then subject to
singularities.

An alternative idea is to consider the underlying space as a manifold and to define an operator ⊞
that maps a local variation ∆x in the Euclidean space to a variation on the manifold, ∆x 7→ x ⊞∆x.
We refer the reader to [7, §1.3] for more mathematical details. With this operator, a new error function
can be defined as

ĕk(∆x̃k)
def.
= ek(x̆k ⊞∆x̃k) (22)
= ek(x̆⊞∆x̃) ' ĕk + J̃k∆x̃, (23)

where x̆ spans over the original over-parameterized space, for instance quaternions. The term ∆x̃
is a small increment around the original position x̆ and is expressed in a minimal representation. A
common choice for SO(3) is to use the vector part of the unit quaternion. In more detail, one can
represent the increments ∆x̃ as 6D vectors ∆x̃T = (∆t̃

T
q̃T ), where ∆t̃ denotes the translation and

q̃T = (∆qx ∆qy ∆qz)
T is the vector part of the unit quaternion representing the 3D rotation. Conversely,

x̆T = (t̆T q̆T ) uses a quaternion q̆ to encode the rotational part. Thus, the operator ⊞ can be expressed
by first converting∆q̃ to a full quaternion∆q and then applying the transformation∆xT = (∆tT ∆qT )
to x̆. In the equations describing the error minimization, these operations can nicely be encapsulated by
the ⊞ operator. The Jacobian J̃k can be expressed by

J̃k =
∂ek(x̆⊞∆x̃)

∂∆x̃

∣∣∣∣
∆x̃=0

. (24)

Since in the previous equation ĕ depends only on ∆x̃ki ∈ ∆x̃k we can further expand it as follows:

J̃k =
∂ek(x̆⊞∆x̃)

∂∆x̃

∣∣∣∣
∆x̃=0

(25)

=
(
0 · · ·0 J̃k1

· · · J̃ki
· · ·0 · · · J̃kq

0 · · ·0
)
. (26)

With a straightforward extension of notation, we set

J̃ki
=

∂ek(x̆⊞∆x̃)

∂∆x̃ki

∣∣∣∣
∆x̃=0

(27)

With a straightforward extension of the notation, we can insert Eq. 23 in Eq. 8 and Eq. 11. This
leads to the following increments:

H̃∆x̃∗ = −b̃. (28)

Since the increments ∆x̃∗ are computed in the local Euclidean surroundings of the initial guess x̆, they
need to be re-mapped into the original redundant space by the ⊞ operator. Accordingly, the update rule
of Eq. 15 becomes

x∗ = x̆⊞∆x̃∗. (29)

In summary, formalizing the minimization problem on a manifold consists of first computing a set of
increments in a local Euclidean approximation around the initial guess by Eq. 28, and second accumulat-
ing the increments in the global non-Euclidean space by Eq. 29. Note that the linear system computed
on a manifold representation has the same structure like the linear system computed on an Euclidean
space. One can easily derive a manifold version of a graph minimization from a non-manifold version,
only by defining an ⊞ operator and its Jacobian J̃ki

w.r.t. the corresponding parameter block. In g2o
we provide tools for numerically computing the Jacobians on the manifold space. This requires the user
to implement the error function and the ⊞ operator only. As a design choice, we do not address the
non-manifold case since it is already contained in the manifold one. However, to achieve the maximum
performances and accuracy we recommend the user to implement analytic Jacobians, once the system is
functioning with the numeric ones.
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5 Robust Least Squares
Optionally, the least squares optimization can be robustified. Note, that the error terms in Eq. 1 have
the following form:

Fk = eTkΩkek = ρ2

(√
eTkΩkek

)
with ρ2(x) := x2. (30)

Thus, the error vector ek has quadratic influence on F, so that a single potential outlier would have
major negative impact. In order be more outlier robust, the quadratic error function ρ2 can be replaced
by a more robust cost function which weighs large errors less. In g2o, the Huber cost function ρH can
be used

ρH(x) :=

{
x2 if |x| < b

2b|x| − b2 else,
(31)

which is quadratic for small |x| but linear for large |x|. Compared to other, even more robust cost
functions, the Huber kernel has to advantage that it is still convex and thus does not introduce new local
minima in F [8, pp.616]. In practice, we do not need to modify Eq. 1. Instead, the following scheme is
applied. First the error ek is computed as usual. Then, ek is replaced by a weighted version wkek such
that

(wkek)
TΩk(wkek) = ρH

(√
eTkΩkek

)
. (32)

Here, the weights wk are calculated as follows

wk =

√
ρH (||ek||Ω)
||ek||Ω

with ||ek||Ω :=
√
eTkΩkek. (33)

In g2o, the user has fine-grained control and can enable/disable the robust cost function for each edge
individually (see Section 6.2.2).

6 Library Overview
From the above sections it should be clear that a graph-optimization problem is entirely defined by:

• The types of the vertices in the graph (that are the parameters blocks {xi}. For each of those one
has to specify:

– the domain Dom(xi) of the internal parameterization,
– the domain Dom(∆xi) of the increments ∆xi,
– ⊞ : Dom(xi) × Dom(∆xi) → Dom(xi) that applies the increment ∆xi to the previous solution

xi.

• the error function for every type of hyper-edge ek : Dom(∆xk1
)× Dom(∆xk2

)× · · · × Dom(∆xkq
) →

Dom(zk) that should be zero when the perturbated estimate xk ⊞∆xk perfectly satisfies the con-
straint zk.

By default the Jacobians are computed numerically by our framework. However to achieve the maximum
performances in a specific implementation one can specify the Jacobian of the error functions and of the
manifold operators.

In the reminder we will shortly discuss some basic concepts to use and extend g2o. This documen-
tation is by no means complete, but it is intended to help you browsing the automatically generated
documentation. To better visualize the interplay of the components of g2o we refer to the class diagram
of Figure 2.
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HyperGraph
HyperGraph::Vertex

HyperGraph::Edge

OptimizableGraph::Edge

OptimizableGraph::Vertex
OptimizableGraph

SparseOptimizer

Solver

LinearSolver

BaseBinaryEdge<D,E,VertexXi,VertexXj>

BaseMultiEdge<D,E>

BaseUnaryEdge<D,E,VertexXi>

BaseVertex<D, T>

LinearSolverPCG<>

LinearSolverCSparse<>

LinearSolverlCholmod<>

is−a

has−a

has−many

BlockSolver<>

SparseBlockMatrix<T>

Figure 2: Class diagram of g2o.

6.1 Representation of an Optimization Problem
All in all our system utilizes a generic hyper-graph structure to represent a problem instance (defined in
hyper_graph.h). This generic hyper graph is specialized to represent an optimization problem by the
class OptimizableGraph, defined in optimizable_graph.h. Within the OptimizableGraph the inner
classes OptimizableGraph::Vertex and OptimizableGraph::Edge are used to represent generic hyper
edges and hyper vertices. Whereas the specific implementation might be done by directly extending
these classes, we provided a template specialization that implements automatically most of the methods
that are mandatory for the system to work.

These classes are BaseVertex and BaseUnaryEdge, BaseBinaryEdge and BaseMultiEdge.

BaseVertex templatizes the dimension of a parameter block xi and of the corresponding manifold
∆xi, thus it can use blocks of memory whose layout is known at compile-time (means efficiency).
Furthermore, it implements some mapping operators to store the Hessian and the parameter blocks
of the linearized problem, and a stack of previous values that can be used to save/restore parts of
the graph. The method oplusImpl(double* v) that applies the perturbation ∆xi represented by
v, to the member variable _estimate should be implemented. This is the ⊞ operator. Additionally,
setToOriginImpl() that should set the internal state of the vertex to 0 has to specified.

BaseUnaryEdge is a template class to model a unary hyper-edge, which can be used to represent a prior.
It offers for free the calculation of the Jacobians, via an implementation of the linearizeOplus
method. It requires to specify the types of the (single) vertex xi, and type and dimension of the
error e(xk) as template parameters. The function computeError that stores the result of the error
e(xk) in the member Eigen::Matrix _error should be implemented.

BaseBinaryEdge is a template class that models a binary constraint, namely an error function in the
form ek(xk1

,xk2
). It offers the same facilities of BaseUnaryEdge, and it requires to specify the

following template parameters: the type of the nodes xk1
and xk2

and the type and the dimension
of the measurement. Again, it implements the numeric Jacobians via a default implementation of
the linearizeOplus method. Again, the computeError should be implemented in a derived class.

BaseMultiEdge is a template class that models a multi-vertex constraint in the form of ek(xk1
,xk2

, . . . ,xkq
).

It offers the same facilities of the types above, and it requires to specify only the type and dimension
of the measurement as template parameters. The specialized class should take care of resizing the
connected vertices to the correct size q. This class relies on a dynamic memory, since too many
parameters are unknown, and if you need of an efficient implementation for a specific problem
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#include ”g2o/core/ factory . h”

namespace g2o {
G2O_REGISTER_TYPE_GROUP( slam2d ) ;

G2O_REGISTER_TYPE_NAME( ”VERTEX_SE2” , VertexSE2) ;
G2O_REGISTER_TYPE_NAME( ”VERTEX_XY” , VertexPointXY) ;

// . . .
}

Listing 1: Registering types by a constructor from a library

you can program it yourself. Numeric Jacobian comes for free, but you should implement the
computeError in a derived class, as usual

In short, all you need to do to define a new problem instance is to derive a set of classes from those
above listed, one for each type of parameter block and one for each type of (hyper)edge. Always try to
derive from the class which does the most work for you. If you want to have a look at a simple example
look at vertex_se2 and edge_se2. Those two types define a simple 2D graph SLAM problem, like the
one described in many SLAM papers.

Of course, for every type you construct you should define also the read and write functions to read
and write your data to a stream. Finally, once you define a new type, to enable the loading and the
saving of the new type you should “register” it to a factory. This is easily done by assigning a string tag
to a new type, via the registerType function. This should be called once before all files are loaded.

To this end, g2o provides an easy macro to carry out the registration of the class to the factory. See
Listing 1 for an example, the full example can be found in types_slam2d.cpp. The first parameter given
to the macro G2O_REGISTER_TYPE specifies the tag under which a certain vertex / edge is known. g2o will
use this information while loading files and for saving the current graph into a file. In the example given
in Listing 1 we register the tags VERTEX_SE2 and EDGE_SE2 with the classes VertexSE2 and EdgeSE2,
respectively.

Furthermore, the macro G2O_REGISTER_TYPE_GROUP allows to declare a type group. This is necessary
if we use the factory to construct the types and we have to enforce that our code is linked to a specific
type group. Otherwise the linker may drop our library, since we do not explicitly use any symbol provided
by the library containing our type. Declaring the usage of a specific type library and hence enforcing
the linking is done by the macro called G2O_USE_TYPE_GROUP.

6.2 Construction and Representation of the Linearized Problem
The construction and the solution can be separated into individual steps which are iterated.

• Initialization of the optimization (only before the first iteration).

• Computing the error vector for each constraint.

• Linearize each constraint.

• Build the linear system.

• Updating the Levenberg-Marquardt damping factor.

Within the following sections we will describe the steps.

6.2.1 Initialization

The class SparseOptimizer offers several methods to initialize the underlying data structure. The
methods initializeOptimization() either takes a subset of vertices or a subset of edges which will
be considered for the next optimization runs. Additionally, all vertices and edges can be considered
for optimization. We refer to the vertices and edges currently considered as active vertices and edges,
respectively.
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Within the initialization procedure, the optimizer assigns a temporary index to each active vertex.
This temporary index corresponds to the block column / row of the vertex in the Hessian. Some of the
vertices might need to be kept fixed during the optimization, to resolve arbitrary degrees of freedom
(gauge freedom). This can be done by setting the _fixed attribute of a vertex.

6.2.2 Compute error

The computeActiveErrors() function takes the current estimate of the active vertices and for each
active edge calls computeError() for computing the current error vector. Using the base edge classes
described in Section 6.1 the error should be cached in the member variable _error.

If robustKernel() is set to true for a particular active edge, robustifyError() is called and _error
is robustified as described in Section 5.

6.2.3 Linearizing the system

Each active edge is linearized by calling its linearizeOplus() function. Again the Jacobians can be
cached by member variables provided by the templatized base classes described in Section 6.1. If the
linearizeOplus() function is not re-implemented the Jacobian will be computed numerically as follows:

J̃•l
k =

1

2δ
(ek(xk ⊞ δ1l)− ek(xk ⊞−δ1l)) , (34)

where δ > 0 is a small constant (10−9 in our implementation) and 1l is the unit vector along dimension
l. Note that we only store and calculate the non-zero entries of J̃k that have not been fixed during the
initialization.

6.2.4 Building the system

For each active edge the addend term for Eq. 18 is computed by multiplying the corresponding blocks
of the Jacobians and the information matrix of the edge. The addend term is calculated in each edge by
calling constructQuadraticForm().

6.2.5 Updating Levenberg-Marquardt

As illustrated in Eq. 16 the Levenberg-Marquardt algorithm requires updates to the linear system.
However, only the elements along the main diagonal need to be modified. To this end, the methods
updateLevenbergSystem(double lambda) and recoverSystem(double lambda) of the Solver class
apply the modifications by respectively adding or subtracting λ along the main diagonal of H.

6.3 Solvers
A central component of these least-squares approaches is the solution of the linear system H̃∆x̃∗ = −b̃.
To this end there are several approaches available, some of them exploit the known structure of certain
problems and perform intermediate reductions of the system, like by applying the Schur complement to
a subset of variables. In g2o we do not select any particular solver, but we rely on external libraries. To
this end, we decouple these structural operations (like the Schur complement) from the solution of the
linear system.

The construction of the linear problem from the Jacobian matrices and the error vectors in the
hyper-graph elements are controlled by a so-called Solver class. To use a specific factorization of the
system, the user has to extend the Solver class, and to implement the virtual functions. Namely a
solver should be able to extract from an hyper-graph the linear system, and to return a solution. This
is done in several steps: at the beginning of the optimization the function initializeStructure is
called, to allocate the necessary memory that will be overwritten in the subsequent operations. This
is possible since the structure of the system does not change between iterations. Then the user should
provide means to access to the increment vector ∆x̃ and b̃, via the functions b() and x(). To support
Levenberg-Marquardt one should also implement a function to perturb the Hessian with the λI term.
This function is called setLambda(double lambda) and needs to be implemented by the specific solver.
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We provide a templatized implementation of the solver class, the BlockSolver<> that stores the linear
system in a SparseBlockMatrix<> class. The BlockSolver<> implements also the Schur complement,
and relies on another abstract class, the LinearSolver to solve the system. An implementation of the
linear solver does the actual work of solving the (reduced) linear system, and has to implement a few
methods. In this release of g2o we provide linear solvers that use respectively preconditioned gradient
descent, CSparse, and CHOLMOD.

6.4 Actions
To the extent of g2o, the entities stored in a hyper-graph have a pure mathematical meaning. They
either represent variables to be optimized (vertices), or they encode optimization constraints. However,
in general these variables are usually related to more “concrete” objects, like laser scans, robot poses,
camera parameters and so on. Some variable type may support only a subset of feasible operations. For
instance it is possible to “draw” a robot pose, but it is not possible to “draw” the calibration parameters.
More in general we cannot know a priori the kind of operations that will be supported by the user types
of g2o. However, we want to design a set of tools and of functions that rely on certain operations. These
include, for instance viewers, or functions to save/load the graph in a specific format.

A possibility to do this would be to “overload” the base classes of the hyper-graph elements (vertices
and edges) with many virtual functions, one for each of the functionality we want to support. This is of
course not elegant, because we would need to patch the base classes with the new function every time
something new is added. Another possibility would be to make use of the multiple inheritance of C++,
and to define an abstract “drawable” object, on which the viewer operates. This solution is a bit better,
however we cannot have more than one “drawing” function for each object.

The solution used in g2o consists in creating a library of function objects that operate on the elements
(vertices or edges) of the graph. One of these function objects is identified by a function name and by a
type on which it operates. These function objects can be registered into an action library. Once these
objects are loaded in the action library it is possible to call them on a graph. These functionalities are
defined in hyper_graph_action.h. It is common to register and create the actions when defining the
types for the edges and the vertices. You can see many examples in types_*/*.h.

7 g2o Tools
g2o comes with two tools which allow to process data stored in files. The data can be loaded from a
file and stored again after processing. In the following we will give a brief introduction to these tools,
namely a command line interface and a graphical user interface.

7.1 g2o Command Line Interface
g2o is the command line interface included in g2o. It allows to optimize graphs stored in files and save
the result back to a file. This allows a fast prototyping of optimization problems, as it is only required to
implement the new types or solvers. The g2o distribution includes a data folder which comprises some
data files on which g2o can be applied.

7.2 g2o Viewer
The Graphical User Interface depicted in Figure 3 allows to visualize the optimization problem. Addi-
tionally, the various parameters of the algorithms can be controlled.

7.3 g2o incremental
g2o includes an experimental binary for performing optimization in an incremental fashion, i.e., optimiz-
ing after inserting one or several nodes along with their measurements. In this case, g2o performs rank up-
dates on the Hessian matrix to update the linear system. Please see the README in the g2o_incremental
sub-folder for additional information.

Example for the Manhattan3500 dataset:
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Figure 3: Graphical interface to g2o. The GUI allows to select different suitable optimizers and perform
the optimization.

g2o_incremental -i manhattanOlson3500.g2o

7.4 Plug-in Architecture
Both tools support the loading of types and optimization algorithms at run-time from dynamic

libraries. This is realized as follows. The tools load from the libs folder all libraries matching “*_types_*”
and “*_solver_*” to register types and optimization algorithms, respectively. We assume that by loading
the libraries the types and the algorithms register via their respective constructors to the system. Listing 1
shows how to register types to the system and Listing 2 is an example, which shows how to register an
optimization algorithm via the plug-in architecture.

For loading dynamic library containing types or optimization algorithms, we support two different
methods:

• The tools recognize the command line switch -typeslib and -solverlib to load a specific library.

• You may specify the environment variables G2O_TYPES_DIR and G2O_SOLVER_DIR which are scanned
at start and libraries matching “*_types_*” and “*_solver_*” are automatically loaded.

8 2D SLAM: An Example
SLAM is a well known problem in robotics and this acronym stands for “Simultaneous Localization
And Mapping”. The problem can be stated as follows: given a moving robot equipped with some
sensors, we want to estimate both the map and the pose of the robot in the environment from the sensor
measurements. Usually, the sensors can be classified in exteroceptive or proprioceptive. An exteroceptive
sensor is a device that measures quantities relative to the environment where the robot moves. Examples
of these sensors can be cameras that acquire an image of the world at a particular location, laser scanners
that measure a set of distances around the robot or accelerometers in presence of gravity that measure
the gravity vector or GPS that derive a pose estimate by observing the constellation of known satellites.
In contrast, proprioceptive sensors measure the change of the robot’s state (the position), relative to the
previous robot position. Example include odometers, that measure the relative movement of the robot
between two time steps or gyroscopes. In traditional approaches to SLAM, like EKF these two sensors
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c l a s s PCGSolverCreator : publ ic AbstractOptimizationAlgorithmCreator
{

public :
PCGSolverCreator ( const OptimizationAlgorithmProperty& p) :

AbstractOptimizationAlgorithmCreator (p) {}
v i r tua l OptimizationAlgorithm∗ construct ()
{

// create the optimization algorithm
// see g2o/solver_pcg/solver_pcg . cpp for the d e t a i l s

}
} ;

G2O_REGISTER_OPTIMIZATION_LIBRARY( pcg ) ;

G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg , new PCGSolverCreator ( OptimizationAlgorithmProperty
( ”gn_pcg” , ”Gauss−Newton : PCG so lver using block−Jacobi pre−condit ioner ( var iab le
b locks i ze ) ” , ”PCG” , fa l s e , Eigen : : Dynamic , Eigen : : Dynamic) ) ) ;

G2O_REGISTER_OPTIMIZATION_ALGORITHM(gn_pcg3_2 , new PCGSolverCreator (
OptimizationAlgorithmProperty ( ”gn_pcg3_2” , ”Gauss−Newton : PCG so lver using block−Jacobi
pre−condit ioner ( f ixed b locks i ze ) ” , ”PCG” , true , 3 , 2) ) ) ;

// . . .

Listing 2: Registering solvers by a constructor from a library

play a substantially different role in the system. The proprioceptive measurements are used to evolve
a set of state variables, while the exteroceptive measurements are used to correct these estimates, by
feeding back the measurement errors. This is not the case of smoothing methods (like the ones that can
be implemented with g2o), where all measurements are treated in a substantially similar manner.

A complete solution to SLAM is typically rather complex and involves processing raw sensor data and
determining correspondences between previously seen parts of the environment and actual measurements
(data association). Describing a complete solution to the problem is out of the scope of this document.
However, in the reminder we will present a simplified but meaningful version of the problem that contains
all the relevant elements and that is well suited to be implemented with g2o.

The scenario is a robot moving on a plane. The robot is equipped with an odometry sensor that
is able to measure the relative movement of the robot between two time frames and of a “landmark”
sensor that is able to measure the position of some environment landmarks nearby the robot in the robot
reference frame. One could implement this landmark detector, for instance, by extracting corners from
a laser scan or by detecting the position of relevant features from a stereo image pair. A simplification
that we make in this section is that the landmarks are uniquely identifiable. In other words whenever
the robot sees a landmark, it can tell if it is a new one or if it has already seen it and when.

Clearly both odometers and landmark sensors are affected by noise. In principle, if the odometry
would not be affected by noise one could reconstruct the trajectory of the robot simply by chaining
the odometry measurements. However, this is not the case and integrating the odometry leads to an
increasing positioning error that becomes evident when the robot reenters a known region. In a similar
way, if the robot would have unlimited perception range, it could acquire all the map in one shot and the
position could be retrieved by simple geometric constructions. Again this is not the case and the robot
perceives the position of the landmarks that are located within a maximum range. These measurements
are affected by a noise, that usually increases with the distance of a landmark from the robot.

In the remainder of this section we will walk through all essential steps that are required to characterize
a problem within g2o. These are:

• identification of the state variables xi and of their domain,

• characterization of the constraints and identification of the graph structure,

• choice of the parameterization for the increments ∆x̃i, and definition of the ⊞ operator.

• construction of the error functions ek(xk).
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Figure 4: Graphical representation of a SLAM process. The vertices of the graph, depicted with circular
nodes, denote either robot poses xs

∗ or landmarks xl
∗. The measurement of a landmark from a robot

pose is captured by a constraints zl∗ and odometry measurements connecting subsequent robot poses are
modeled by the constraints zs∗.

8.1 Identification of the State Variables
Figure 4 illustrates a fragment of a SLAM graph. The robot positions are denoted by the nodes xs

t,
while the landmarks are denoted by the nodes xl

i. We assume that our landmark sensor is able to detect
only the 2D pose of a landmark, but not its orientation. In other words the landmarks “live” in <2.
Conversely, the robot poses are parameterized by the robot location (x, y) on the plane and its orientation
θ, thus they belong to the group of 2D transformations SE(2). More formally, the nodes of a 2D SLAM
graph are of two types

• Robot positions xs
t = (xs

t y
s
t θ

s
t)

T ∈ SE(2)

• Landmark positions xl
i = (xl

i y
l
i)

T ∈ <2

8.2 Modeling of the Constraints
Two subsequent robot positions xs

t and xs
t+1 are related by an odometry measurement, that represent

the relative motion that brings the robot from xs
t to xs

t+1 measured by the odometry. This measurement
will be typically slightly different from the real transformation between the two pose because of the noise
affecting the sensors. Being an odometry measurement, an Euclidean transformation, it is also a member
of SE(2) group. Assuming the noise affecting the measurement being white and Gaussian, it can be
modeled by an 3 × 3 symmetric positive definite information matrix. In real applications the entries of
this matrix depend on the motion of the robot. i.e., the bigger the movement is the larger the uncertainty
will be. Thus an odometry edge between the nodes xs

t and xs
t+1 consists of these two entities:
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• zst,t+1 ∈ SE(2) that represents the motion between the nodes and

• Ωs
t,t+1 ∈ <3×3 that represents the inverse covariance of the measurement, and thus is symmetric

and positive definite.

If the robot senses a landmark xl
i from the location xs

t, the corresponding measurement will be
modeled by an edge going from the robot pose to the landmark. A measurement about the landmark
consists in a point in the x-y plane, perceived in the robot frame. Thus a landmark measurement lives
in <2 as the landmarks do. Again, under white Gaussian noise assumption, the noise can be modeled
by its inverse covariance. Accordingly, an edge between a robot pose and a landmark is parametrized in
this way:

• zlt,i ∈ <2 that represents position of the landmark in the frame expressed by xs
t and

• Ωl
t,i ∈ <2×2 that represents the inverse covariance of the measurement and is SPD.

8.3 Choice of the Parameterization for the Increments
So far, we defined most of the elements necessary to implement a 2D SLAM algorithm with g2o. Namely
we characterized the domains of the variables and the domains of the measurements. What remains to
do is to define the error functions for the two kinds of edges in our system and to determine a (possibly
smart) parameterization for the increments.

The landmark positions are parameterized in <2, which is already an Euclidean space. Thus the
increments ∆x̃l

i can live in the same space and the ⊞ operator can be safely chosen as the vector sum:

xl
i ⊞∆x̃l

i
.
= xl

i +∆x̃l
i (35)

The poses, conversely, live in the non-Euclidean space SE(2). This space admits many parameteriza-
tions. Examples include: rotation matrix R(θ) and translation vector (x y)T or angle θ and translation
vector (x y)T .

As a parameterization for the increments, we choose a minimal one, that is translation vector and
angle. Having chosen this parameterization, we need to define the ⊞ operator between a pose and a pose
increment. One possible choice would be to treat the three scalar parameters x, y and θ of a pose as
if they were a vector, and define the ⊞ as the vector sum. There are many reasons why this is a poor
choice. One of them is that the angles are not Euclidean, and one would need to re-normalize them after
every addition.

A better choice is to define the ⊞ between a pose and a pose increment as the motion composition
operator. Namely, given a robot pose xs

t = (x y θ)T and an increment ∆x̃s
t = (∆x ∆y ∆θ)T , where ∆x is

the longitudinal displacement (i.e. in direction of the heading of the robot), ∆y the lateral displacement
and ∆θ the rotational change, the operator can be defined as follows:

xs
t ⊞∆x̃s

t
.
=

 x+∆x cos θ −∆y sin θ
y +∆x sin θ +∆y cos θ
normAngle(θ +∆θ)

 (36)

= xs
t ⊕∆x̃s

t. (37)

In the previous equation we introduced the motion composition operator ⊕ Similarly to ⊕ there is
the 	 operator that performs the opposite operation and is defined as follows:

xs
a 	 xs

b
.
=

 (xa − xb) cos θb + (ya − yb) sin θb
−(xa − xb) sin θb + (ya − yb) cos θb

normAngle(θb − θa)

 (38)

8.4 Design of the Error Functions
The last step in formalizing the problem is to design error functions e(xk) that are “reasonable”. A
common way to do this to define a so-called measurement function hk(xk) that “predicts” a measurement
ẑk, given the knowledge of the vertices in the set xk. Defining this function is usually rather easy, and
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can be done by directly implementing the error model. Subsequently, the error vector can be computed
as the vector difference between the prediction ẑk and the real measurement. This is a general approach
to construct error functions and it works when the space of the errors is locally Euclidean around the
origin of the measurement. If this is not the case one might want to replace the vector difference with
some other operator which is more “regular”.

We will now construct the error functions for the edges connecting a robot pose xs
t and a landmark

xl
i. The first step is to construct a measurement prediction hl

t,i(x
s
t,x

l
i) that computes a “virtual mea-

surement”. This virtual measurement is the position of the landmark xl
i, seen from the robot position

xs
t. The equation for hl

t,i(·) is the following:

hl
t,i(x

s
t,x

l
i)

.
=

(
(xs

t − xl
i) cos θ

s
t + (yst − yli) sin θ

s
t

−(xs
t − xl

i) sin θ
s
t + (yst − yli) cos θ

s
t

)
(39)

which converts the position of the landmark into the coordinate system of the robot.
Since the landmarks live in an Euclidean space, it is reasonable to compute the error function as the

normal vector difference. This leads to the following definition for the error functions of the landmarks.

elt,i(x
s
t,x

l
i)

.
= zt,i − hl

t,i(x
s
t,x

l
i). (40)

In a similar way, we can define the error functions of an odometry edge connecting two robot poses
xs
t and xs

t+1. As stated before, an odometry measurement lives in SE(2). By using the 	 operator we
can write a synthetic measurement function:

hs
t,t+1(x

s
t,x

s
t+1)

.
= xs

t+1 	 xs
t. (41)

In short this function returns the motion that brings the robot from xs
t to xs

t+1, that is the “ideal”
odometry. Once again the error can be obtained as a difference between the measurement and the
prediction. However, since our measurements do not live in an Euclidean space we can use 	 instead of
the vector difference.

est,t+1(x
s
t,x

s
t+1)

.
= zt,t+1 	 hs

t,t+1(x
s
t,x

s
t+1). (42)

8.5 Putting things together
Here we summarize the relevant parts of the previous problem definition, and we get ready for the im-
plementation.

Variable Symbol Domain Dimension Parameterization of ∆x ⊞ operator
Robot pose xs

t SE(2) 3 (∆x ∆y ∆θ) xs
t ⊕∆xs

t

Landmark pose xl
i ℜ2 2 (∆x ∆y) xl

i +∆xl
i

Measurement Symbol Domain Dimension Set xk of variables involved error function
Odometry = zst,t+1 SE(2) 3 {xs

t,x
s
t+1} Eq. 42

Landmark = zlt,i ℜ2 2
{
xs
t,x

l
i

}
Eq. 40

The first thing we are going to do is to implement a class that represents elements of the SE(2)
group. We represent these elements internally by using the rotation matrix and the translation vector
representation, via the types defined in Eigen::Geometry. Thus we define an operator*(...) that
implements the motion composition operator ⊕, and an inverse() function that returns the inverse
of a transformation. For convenience we also implement an operator* that transforms 2D points. To
convert the elements from and to a minimal representation that utilizes an Eigen::Vector3d we define
the methods fromVector(...) and toVector(...). The constructor initializes this class as a point in
the origin oriented at 0 degrees. Note that having a separate class for a group is not mandatory in g2o,
but makes the code much more readable and reusable. The corresponding C++ class is reported in
Listing 3.

Once we defined our nice SE(2) group we are ready to implement the vertices. To this end we
extend the BaseVertex<> class, and we derive the classes VertexSE2 to represent a robot pose and
VertexPointXY to represent a point landmark in the plane. The class definition for robot pose vertices
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c l a s s SE2 {
public :

SE2() :_R(0) ,_t(0 ,0) {}

SE2( double x , double y , double theta ) :_R( theta ) ,_t(x , y){}

SE2 operator ∗ ( const SE2& tr2 ) const{
SE2 r e s u l t (∗ th i s ) ;
r e s u l t . _t += _R∗ tr2 . _t ;
r e s u l t ._R. angle ()+= tr2 ._R. angle () ;
r e s u l t ._R. angle ()=normalize_theta ( r e s u l t ._R. angle () ) ;
return r e s u l t ;

}

Vector2d operator ∗ ( const Vector2d& v2) const{
Vector2d r e s u l t (∗ th i s ) ;
r e s u l t . _t = _t + _R∗ tr2 . _t ;
return r e s u l t ;

}

SE2 inverse () const{
SE2 ret ;
ret ._R=_R. inverse () ;
ret ._R. angle ()=normalize_theta ( ret ._R. angle () ) ;
ret . _t=ret ._R∗(_t∗−1.) ;
return ret ;

}

void fromVector ( const Vector3d& v){
∗ th i s=SE2(v [ 0 ] , v [ 1 ] , v [ 2 ] ) ;

}

Vector3d toVector () const {
Vector3d ret ;
f o r ( int i =0; i <3; i++){

ret ( i )=(∗ th i s ) [ i ] ;
}
return ret ;

}

protected :
Rotation2Dd _R;
Vector2d _t ;

} ;

Listing 3: Helper class to represent SE(2).
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c l a s s VertexSE2 : public BaseVertex <3, SE2>
{

public :
VertexSE2 () ;

v i r tua l void setToOriginImpl () {
_estimate=SE2() ;

}

v i r tua l void oplusImpl ( double∗ update )
{

SE2 up( update [ 0 ] , update [ 1 ] , update [ 2 ] ) ;
_estimate = _estimate ∗ up ;

}

v i r tua l bool read ( std : : istream& i s ) ;
v i r tua l bool write ( std : : ostream& os ) const ;

} ;

Listing 4: Vertex representing a 2D robot pose

c l a s s VertexPointXY : public BaseVertex <2, Eigen : : Vector2d>
{

public :
VertexPointXY () ;

v i r tua l void setToOriginImpl () {
_estimate . setZero () ;

}

v i r tua l void oplusImpl ( double∗ update )
{

_estimate [ 0 ] += update [ 0 ] ;
_estimate [ 1 ] += update [ 1 ] ;

}

v i r tua l bool read ( std : : istream& i s ) ;
v i r tua l bool write ( std : : ostream& os ) const ;

} ;

Listing 5: Vertex representing a 2D landmark

is reported in Listing 4. The pose-vertex extends a template specialization of BaseVertex<>. We
should say to g2o that the internal type has dimension 3 and that the estimate is of type SE2. This
means that the member _estimate of a VertexSE2 is of type SE2. Then all we need to do is to
redefine the methods setToOriginImpl() that resets the estimate to a known configuration, and the
method \oplusImpl(double*). The method should apply an increment, expressed in the increment
parameterization (that is a vector (∆x ∆y ∆θ)t to the current estimate. To do this, we first convert the
vector passed as argument into an SE(2), then we multiply this increment at the right of the previous
estimate. After that we should implement the read and write functions to a stream, but this is straight-
forward and you can look it up yourself in the code.

The next step is to implement a vertex to describe a landmark position. Since the landmarks are
parameterized in <2, we do not need to define any group for that, and we use directly the vector classes
defined in Eigen. This class is reported in Listing 5.

Now we are done with the vertices. We should go for the edges. Since both edges are binary edges we,
extend the class BaseBinaryEdge<>. To represent an odometry edge (see Listing 6) that connects two
VertexSE2, we need to extend BaseBinaryEdge<>, specialized with the types of the connected vertices
(the order matters), where the measurement itself is represented by an SE2 that has dimension 3. The
second template parameter is the one used for the member variable _measurement. The second step is
to construct an error function, by redefining the computeError() method. The computeError() should
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c l a s s EdgeSE2 : public BaseBinaryEdge<3, SE2 , VertexSE2 , VertexSE2>
{

public :
EdgeSE2() ;

void computeError ()
{

const VertexSE2∗ v1 = static_cast<const VertexSE2∗>(_vertices [ 0 ] ) ;
const VertexSE2∗ v2 = static_cast<const VertexSE2∗>(_vertices [ 1 ] ) ;
SE2 delta = _measurement . inverse () ∗ (v1−>estimate () . inverse () ∗v2−>estimate () ) ;
_error = delta . toVector () ;

}
v i r tua l bool read ( std : : istream& i s ) ;
v i r tua l bool write ( std : : ostream& os ) const ;

} ;

Listing 6: Edge connecting two robot poses, for example, the odometry of the robot.

c l a s s EdgeSE2PointXY : public BaseBinaryEdge<2, Eigen : : Vector2d , VertexSE2 , VertexPointXY>
{

public :
EdgeSE2PointXY() ;

void computeError ()
{

const VertexSE2∗ v1 = static_cast<const VertexSE2∗>(_vertices [ 0 ] ) ;
const VertexPointXY∗ l2 = static_cast<const VertexPointXY∗>(_vertices [ 1 ] ) ;
_error = (v1−>estimate () . inverse () ∗ l2−>estimate () ) − _measurement ;

}

v i r tua l bool read ( std : : istream& i s ) ;
v i r tua l bool write ( std : : ostream& os ) const ;

} ;

Listing 7: Edge connecting a robot poses and a landmark.

put the error vector in a member variable error that has type Eigen::Vector<double,3>. Here the 3
comes from the template parameter that specifies the dimension. Again, the read and write functions
can be looked up in the code. Now we are done with this edge. The Jacobians are computed numerically
by g2o. However, if you want to speed up the execution of your code after everything works, you are
warmly invited to redefine the linearizeOplus method.

The last thing that remains to do is to define a class to represent a landmark measurement. This
is shown in Listing 7. Again, we extend a specialization of BaseBinaryEdge<>, and we tell the sys-
tem that it connects a VertexSE2 with a VertexPointXY, that the measurement is represented by an
Eigen::Vector2d that has dimension 2.

The final step we should do to make our system operational, is to register the types to let g2o know
that there are new types ready. However, if you intend to manually construct your graph without doing
any i/o operation on disk, this step is not even necessary. Have fun!

You may find the full code of this 2D SLAM example in the folder examples/tutorials_slam2d.
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